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We further study the stochastic model discussed in ref. 2 in which positive and
negative particles diffuse in an asymmetric, CP invariant way on a ring. The
positive particles hop clockwise, the negative counter-clockwise and oppositely-
charged adjacent particles may swap positions. We extend the analysis of this
model to the case when the densities of the charged particles are not the same.
The mean-field equations describing the model are coupled nonlinear differen-
tial equations that we call the two-component Burgers equations. We find
roundabout weak solutions of these equations. These solutions are used to
describe the properties of the stationary states of the stochastic model. The
values of the currents and of various two-point correlation functions obtained
from Monte-Carlo simulations are compared with the mean-field results. Like
in the case of equal densities, one finds a pure phase, a mixed phase and a dis-
ordered phase.

KEY WORDS: Non-equilibrium statistical mechanics; phase transitions;
Burgers equation.

1. INTRODUCTION

Phase transitions in stationary (far away from equilibrium) states present
still many open questions. Some time ago, (1) we have introduced a simple
one-dimensional three-state model which has interesting properties. In this



model one takes a ring with L sites, the positive particles hop clockwise
with a rate l:

(+)(0)Q (0)(+) (1.1)

((0) is a vacancy). The negative particles hop counter-clockwise with the
same rate l

(0)(−)Q (−)(0) (1.2)

and oppositely charged adjacent particles may exchange positions

(+)(−)Q (−)(+) with rate q (1.3)

(−)(+)Q (+)(−) with rate 1 (1.4)

This model is translational invariant and the numbers of positive and
negative particles are conserved. A detailed study of this model was done
in ref. 2 where we have considered the case in which the densities p (posi-
tive particles) and m (negative particles) were taken equal (p=m=r).
Obviously

p+m+v=1 (1.5)

where v is the density of vacancies. Using mean-field analysis, Monte-Carlo
simulations and representations of the quadratic algebra given by the rates
describing the processes (1.1)–(1.4) we have shown that the model has
three phases. For q < 1 (independent on l and the densities) translational
invariance is spontaneously broken (pure phase). In this phase, in the
thermodynamical limit, the system organizes itself into a block of positive
particles followed by a block of negative particles and one block of vacan-
cies. All blocks are pinned in an arbitrary position on the ring. For 1 < q
< qc(l, r) (called mixed phase) one has Bose–Einstein condensation in
coordinate space (spatial condensation). In this phase one has again charge
segregation but translational invariance is not broken. To understand
better what happens (for finite but large L) it is interesting to start with the
mean-field results. Neglecting fluctuations, the mean-field solutions, which
break translational invariance, show two pinned adjacent blocks. One
block (that we called condensate) contains only charged particles (no
vacancies) with inhomogeneous distributions and a block (called fluid)
which contains all the vacancies and where the particles have homogeneous
distributions (see ref. 2, Fig. 25). As a result of fluctuations, the whole
structure (condensate+fluid) makes a Brownian motion on the ring and
the stationary probability distribution function is obtained taking with
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equal probability, the two adjacent blocks anywhere on the ring. For
q > qc, one is in the disordered phase; there is no charge segregation and
the particles are distributed uniformly. In mean-field, one gets:

qc=1+
4lr
1+2r

(1.6)

and a remarkable simple expression for the current in the mixed phase:

j=(q−1)/4 (1.7)

The current being independent on l and r.
As shown by one of us, (3) one can use the distributions of the zeroes of

the partition function in the grand canonical ensemble as a function of
fugacity à la Lee and Yang, (4) in order to get good estimates of qc (for
other methods, see ref. 2).
The aim of this paper is to further study this model in the case of

unequal densities. As we are going to see, the physics is different. Beside
our physical motivation, we have also a mathematical one. The mean-field
equations given by the present model, are coupled nonlinear differential
equations and as we are going to show, we are able to find exact weak (5)

solutions of these equations. We believe that without knowing the physics
of the model it would have been very difficult to guess them. Since in the
absence of vacancies, the coupled equations reduce to the Burgers equa-
tion, (6) we call the mean-field equations ‘‘The two-component Burgers
equations.’’ In ref. 2, for equal densities, we found stationary solutions of
these equations. In the case of unequal densities we find new solutions of
these equations. We have again three phases, now however, the spatial
structure (which exists in the pure and mixed phases) drifts with constant
velocity around the circle. In the large L limit, the drift velocity vanishes
exponentially in the pure phase, like 1/L for q=1 and is finite for 1 < q <
qc(l, p, m). We think that finding new analytical solutions of PDE is
important and it is possible that our approach can be used to solve
other PDE.
From the mean-field results one can be tempted to conclude that one

has no stationary solutions at all in the case of unequal densities even if we
take into account fluctuations. Actually one can be left with this feeling
from ref. 7 where a different model was considered. That stationary solu-
tions exist in our problem is known from the existence (1, 2) of a quadratic
algebra with known representations and one can obtain in this way exact
solutions for the probability distribution for the stationary state.
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In order to understand the physics of the problem it is instructive to
have a look at the time evolution of a Monte-Carlo run which can be seen
in Fig. 1. The parameters are chosen such that one is in the mixed phase.
One notices that at a given time t one has two regions. In one of them

(the condensate), there are no vacancies and that the boundaries are sharp.
This allows a definition of the width of the condensate: one takes the last
vacancy seen in the simulation on the left side and the first vacancy seen on
the right side. In the condensate the particles are not uniformly distributed:
the positive ones are predominantly on the left side and the negative ones
are on the right side. The second region (the fluid) contains all the vacan-
cies and the charged particles are distributed at random. If we now look at
the figure downwards, one notices that the condensate drifts to the left with
a constant velocity which can be estimated following for example the last
vacancy on the left side of the condensate. Notice also that in the fluid, the
positive particles drift to the right whereas the negative particles drift to
the left.
In Fig. 2 we show the average values of the drift velocities obtained

looking at the motion of the condensate as a function of the size of the
system L in the pure phase (l=1, q=0.8), for q=1 (l=1) and in the
mixed phase (l=1, q=1.2). We have taken p=0.4 and m=0.1.

Fig. 1. A Monte-Carlo ‘‘film’’ for q=1.2, l=1, p=0.3, m=0.1 (mixed phase), L=100.
The time t is running from the top to the bottom of the figure. The positive particles are
depicted black, the negative ones-gray.
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Fig. 2. The drift velocity V as a function of the size of the system L. The upper curve corre-
sponds to the mixed phase, the intermediate one to q=1 and the lowest one to the pure
phase.

In the pure phase, the velocity vanishes exponentially. A fit (also
shown in Fig. 2) to the data gives:

V=0.2742 exp(−0.02615L) (1.8)

For q=1, the drift velocity vanishes algebraically:

V=9.602/L (1.9)

whereas in the mixed phase the fit gives:

V=0.116+6.9658/L (1.10)

We now return to Fig. 1 and notice that the condensate does not only
drift to the left but also does a Brownian motion. If one follows again the
last vacancy on the left side of the condensate, it behaves like a random
walker and therefore one can determine the diffusion coefficient D. This
was done for different sizes of the system and the results are shown in
Fig. 3 for the same parameters as those used in Fig. 2. We notice that
similar to the drift velocity V, for large values of L, the diffusion coefficient
converges to a constant value in the mixed phase, vanishes algebraically for
q=1 and exponentially in the pure phase.
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Fig. 3. The diffusion coefficient D as a function of the size of the system L. The upper curve
corresponds to the mixed phase, the intermediate one for q=1 and the lowest one to the pure
phase.

We would like to stress that we have described up to now is the time
evolution of the fluctuating system (the drift velocity and the diffusion
constant are not properties of the stationary state), nevertheless from our
observations we can guess the properties of the stationary states. It is clear
that in the pure phase, in the thermodynamical limit, one gets three adja-
cent pinned blocks and like in the case of equal densities, translational
invariance is broken. The situation is different in the mixed phase. If we
follow again the last vacancy on the left side of the condensate, since it
moves like a random walker with a finite diffusion coefficient, the disper-
sion increases with time up to when it reaches the perimeter of the ring. For
later times one can find this vacancy anywhere on the ring. This implies
that in the stationary state, one finds with equal probability the structure
condensate+fluid in any position on the ring. The existence of such a
structure obviously implies charge segregation (long range correlations)
without breaking of translational invariance.
We can understand better now what is going to be the role of mean-field

calculations. On one hand, one can estimate non-equilibrium quantities like
the drift velocity, on the other hand one can obtain the condensate+fluid
structure. Once the latter is known, one can obtain the probability distribu-
tion of the stationary state taking as mentioned, with equal probability the
charge distribution obtained in mean-field in any position on the ring.
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The paper is organized as follows. In Section 2 we consider the mean-
field equations for the case q > 1. Those are the two-component Burgers
equations. In this section we shortly remind the reader some of the results
obtained in ref. 2 for the case of equal densities and also present some new
ones. In Section 3 we find exact weak solutions of the two-component
Burgers equations for the case of unequal densities which tell us under
which conditions the condensation phenomenon appears. In this way one
can obtain the function qc(l, p, m). Moreover one obtains the drift velocity
V and the charge distributions in the condensate. Let us stress that unlike
the Burgers equation one can’t obtain the solutions with a drift from the
stationary ones. We have not considered the case q < 1 since it can be
studied along similar lines (see ref. 2 for the case p=m).
In Section 4 we discuss the properties of the stationary states taking into

account fluctuations. One presents data on the currents and correlation
functions obtained from Monte-Carlo simulations and compares them with
the results obtained in mean-field used as described above. We also give some
results using the algebraic approach (2) which is, in the case of unequal densi-
ties, harder to apply. The conclusion is presented in Section 5.
Since this work is the continuation of the one presented in ref. 2, this

paper is not self-contained and it can’t be understood without first reading
ref. 2 unless one is interested only in the solutions of the two-component
Burgers equations described in Sections 2 and 3.
We would like to mention that the model described above was sub-

sequently studied again on a ring, in the case in which only one vacancy
(seen as a defect) is present (7) and for a special case of open boundaries. (8)

2. THE TWO-COMPONENT BURGERS EQUATIONS (q > 1)

The mean-field equations in the continuum of the model defined by
Eqs. (1.1)–(1.4) are (ref. 2, Appendix B):

“j±
“x
±
“r±

“t
=0 (2.1)

where r± are the local densities of the charged particles (r0 is the local
density of the vacancies) satisfying the obvious relation:

r++r−+r0=1 (2.2)

j+ is the local current density of positive particles, j− is minus the local
current density of negative particles (the minus sign is convenient if one
looks at stationary states in the case of equal densities since with this choice
of signs one gets j+=j− ). The expressions of the current densities are:
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j±=lr±r0+(q−1) r+r−+
1
2
5(q+1) 1r+

“r−

“x
−r−

“r+

“x
2

±l 1r±
“r0

“x
−r0

“r±

“x
26 (2.3)

We are looking at periodic solutions of the Eqs. (2.1):

r± (x, t)=r± (x+L, t) (2.4)

where L is the perimeter of the ring. We will also be interested in solutions
with a drift velocity V counter clockwise (see Fig. 1):

r± (x, t)=r± (x+Vt) (2.5)

which implies that in the moving frame, the quantities

C±=±Vr±+j± (2.6)

are independent of x. It is useful to define

y=
x
L
, 0 [ y [ 1 (2.7)

and

J±=
C±
q−1

, W=
V
q−1

, a±=
j±
q−1

,

n=
q+1
2L(q−1)

, g=
l

q−1
, m=

g

2L

(2.8)

In Eq. (2.8) we have assumed that q > 1. Rescaling the time, instead of
Eqs. (2.1), (2.3)–(2.6) one finds:

“a±

“y
±
“r±

“t
=0 (2.9)

a±=gr±r0+wr+r−+n 1r+
“r−

“y
−r−

“r+

“y
2±m 1r±

“r0

“y
−r0

“r±

“y
2 (2.10)

a± (y, t)=a± (y+1, t) (2.11)

a± (y, t)=a± (y+Wt) (2.12)

J±=±Wr± ± a± (2.13)
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where w=1. Since the numbers of positive and negative particles are con-
served, we are looking for solutions for given densities p and m:

F
1

0
r+ dy=p, F

1

0
r− dy=m (2.14)

We call the Eqs. (2.10)–(2.11) the two-component Burgers equations. We
have coined this name to the equations since if the density of vacancies r0
is equal to zero, we can make in Eqs. (2.10) the substitution

a±=
1
2±f (2.15)

and see that f satisfies the Burgers equation (6)

“f
“t
=n
“
2f
“y2
+zf

“f
“y

(2.16)

where z=2 and n is the damping constant whose physical interpretation in
our model can be read of from Eq. (2.8). One notices that in the infinite
volume limit, the damping constant vanishes and one obtains the inviscid
Burgers equation. (6) The constant m appearing in Eqs. (2.10) will be called
moisture constant. Notice (see Eq. (2.8)) that the moisture constant also
vanishes in the large L limit.
An important result of our investigation is that one is able to give

exact solutions to the two-component Burgers equation. Let us review the
results obtained in ref. 2 (Section 6). For equal densities, in the mixed
phase, inspired by the results obtained numerically (see Fig. 25), one can
obtain the stationary solutions in the following way. We divide the segment
0 < y < 1 into two smaller segments: 0 < y < a where we have a condensate
(no vacancies) with a non-uniform distributions of the charged particles
and a second segment of length b, (a+b=1) where the particles have a
uniform distribution (fluid). Therefore in the condensate one can use the
Burgers equation whereas in the fluid one has almost nothing to compute.
Numerical investigation teach us how to sew the two segments: the density
of positive particles is smooth at the right-side of the condensate (y=a)
but not at the left-side (y=0) where it is discontinuous. For the negative
particles the discontinuity is at y=a as a consequence of the CP invariance
of the problem. The solutions obtained in this way are weak solutions of
the differential equations which correspond to taking the moisture constant
m equal to zero. They represent an excellent approximation not only of the
concentration profiles obtained numerically for the mean-field equations
but also of the concentration profiles seen in computer simulations (see
Figs. 8 and 9 in ref. 2).
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The values of a are dependent on n, g and the density p=m=r. The
domain in the space of the variables n, g, and r where solutions exist define
the mixed phase. In the thermodynamic limit (n=0) one obtains for b the
value

B=
v(1+2g)
2(1+g)

(2.17)

The result mentioned in Section 1 for qc (see Eq. (1.6)) is obtained from
Eq. (2.17) when takes B=1 (the condensates disappears). To the results
obtained in ref. 2 we would like to add some supplementary data which are
relevant also for the case of unequal densities. For a given value of g there
is a maximum value of n (nmax) beyond which the condensation does not
take place anymore. Moreover, one would expect that for nmax the length of
the condensate a is zero and that a increases as the damping constant
decreases. This is not the case: for n=nmax one gets a non-vanishing value
for a equal to amin.
In Figs. 4 and 5 one can see this phenomenon. We work with the

variables q, l and L instead of n and g (three variables instead of two) not
only because our physical intuition is in these variables but also because in
Section 4 we will look into the stochastic problem where, unlike in mean-
field with m=0, on has all the three variables.
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Fig. 4. The minimal length of the system to have a condensate for different q and l=1,
p=m=0.2. The data is very good fitted by L=17(qc−q)−3/2.
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Fig. 5. The length of the condensate when condensation starts for different q and l=1,
p=m=0.2.

One notices that as we approach the critical point (qc=1.5714 as
obtained from Eq. (1.6)), the minimal length Lmin diverges and the smallest
condensate amin vanishes.
We should stress again that the solutions described above are weak

solutions for the stationary states of the two-component Burgers equation.
The current is constant on the segment 0 < y < 1 but the densities are dis-
continuous. One can ask the question how do these discontinuous solutions
look like if one looks at the ‘‘microscopic’’ problem on the lattice both
in mean field and in Monte-Carlo simulations. As one can see in ref. 2,
Fig. 25 or in the present paper Figs. 1 and 7, there are two dramatic
changes in the densities over not more than a few sites for any lattice size
L. If one works with the y=x/L variable, these localized, abrupt, changes
lead to discontinuous solutions.
One can ask if in the mixed phase the condensate+fluid solutions are

the single ones. The answer is no. Obviously one has a solution where all
the densities are constant (pure fluid). More interestingly, for a given value
of n, g and r one can have solutions with n condensates (fluid+condensate
+·· ·+fluid+condensate) all of them with the same distribution of charged
particles and located anywhere on the ring. It is easy to show that in order
to get the solutions with n condensates one has to use the solutions
obtained for a single condensate in which we take the damping constant
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equal to nn. We didn’t study the problem of the stability of these solutions.
What we do know is that we have also obtained numerically these solutions
by using the time-dependent mean field equations (see ref. 2, Eq. (B2)) and
that we have obtained, depending on the initial conditions, solutions with
no condensate, with one condensate and with two condensates. We didn’t
take large lattices where one could have seen more than two condensates.
One comment is in place concerning the multi-condensate solutions of

mean-field. In the presence of fluctuations, each condensate behaves like a
random walker who sooner or later will meet another random walker.
When two condensates meet, they melt into a single condensate so that if
one starts with n condensates, we end up with a single one. This is seen in
Monte-Carlo simulations.

3. ROUNDABOUT SOLUTIONS OF THE TWO-COMPONENT

BURGERS EQUATIONS (q > 1)

Before describing roundabout solutions of the differential equations
(2.9) obtained in the case of unequal densities for the positive and negative
particles, it is interesting to give some results obtained looking at large time
solutions of the mean-field equations on the lattice (ref. 2, Eq. (B2))
obtained numerically. We are interested in the results obtained on the
lattice for two reasons. Firstly, the physical problem is defined on the
lattice and not in the continuum and we want to be sure that one obtains
the same results. Secondly, we will solve the differential equations taking
the moisture constant mu (see Eq. (2.8)) equal to zero, this implies looking
for weak solutions, and it is important to know if the weak solutions
reproduce the lattice results. If we take q=1.2, l=1, p=0.4, m=0.1, and
1000 sites, we can plot the measured current densities versus the measured
densities as shown in Fig. 6. One notices that in agreement with Eq. (2.6)
one obtain straight lines. Moreover one can determine in this way, with
high precision, the drift velocity V, its value for the parameters given above
being V=0.11878. The same value will be obtained later in the continuum
(see Eq. (3.31) and is compatible with the fit to the Monte-Carlo data (see
Eq. (1.10)) from which one obtains V=0.123.
In Fig. 7 we show the distributions of the current densities and of the

particle densities for a shorter lattice (L=200) keeping all the other data
unchanged. Like in the case of equal densities, one observes a condensate
(a region without vacancies) and a fluid with uniformly distributed charged
particles. Based on these numerical observations one can start to look for
roundabout solutions of Eqs. (2.9), taking into account Eqs. (2.11)–(2.14).
We first start with the condensate (0 < y < a) where we have no vacancies.
Denoting
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Fig. 6. The current densities as a function of the densities for q=1.2, l=1, L=1000,
p=0.4, m=0.1 (lattice mean-field results). Using Eq. (2.6) one finds V=0.11878.

rc±=
1+W
2
±u (3.1)

J=
J++J−
2

(3.2)

from Eq. (2.13) we obtain:

J+−J−=W (3.3)

and from Eqs. (2.13) and (2.10) we get:

a2=4J−1−W2=−4 1u2+n “u
“y
2 (3.4)

We have denoted by rc± the densities of the charged particles in the con-
densate. Obviously

rc++r
c
−=1 (3.5)
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Fig. 7. The profiles of the densities and currents (scaled by a factor 3) obtained numerically
on a lattice with 200 sites. The other data are like in Fig. 6. The condensate is drifting to the
left.

We can integrate Eq. (3.4) and find:

u=bn tan[b(aj−y)] (3.6)

where j is an arbitrary constant and

b=
a

2n
(3.7)

At this point J, W, and j are unknown constants which still have to
be fixed. We now consider the fluid (a < y < 1) where all the vacancies are
concentrated. In this domain the densities r fl± and r

fl
0 are constant (inde-

pendent of y) and verify the relation:

r fl++r
fl
−+r

fl
0=1 (3.8)

We obviously have

r fl0=v/b (3.9)
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where v is the density of vacancies and b the length of the fluid. From
Eq. (2.10) we get:

a
fl
±=gr

fl
±r

fl
0+r

fl
+r

fl
− (3.10)

We denote

D=r fl+−r
fl
− (3.11)

and get

W=gDr fl0 (3.12)

and

a2=−D2(g−1)2−(r fl0 )
2 (2g−1)+2r fl0 (g−1) (3.13)

We now sew the condensate with the fluid asking for the following condi-
tions to be fulfilled:

rc+(a)=r
fl
+ , rc−(0)=r

fl
− (3.14)

Using Eqs. (3.1) and (3.14) we get:

u(0)=
1
2
−
W
2
−r fl− , −u(a)=

1
2
+
W
2
−r fl+ (3.15)

and therefore:

r fl0=bn(tan[ba(1−j)]+tan[baj]) (3.16)

and

W−D=bn(tan[ba(1−j)]− tan[baj]) (3.17)

We now use Eq. (2.14) and get for n condensates:

n F
a

0
rc+ dy+r

fl
+b=p, n F

a

0
rc− dy+r

fl
−b=m (3.18)

It is useful to denote

d=p−m (3.19)
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and from Eq. (3.18) we obtain:

d=1Wa+2 F a
0
u dy2 n+Db (3.20)

We have to make again a change of notations:

baj=
p

2
−k1, ba(1−j)=

p

2
−k2 (3.21)

In the new notations Eqs. (3.16), (3.17), (3.20), and (3.13) become:

r fl0=(p−(k1+k2))
n

a
[cot k2+cot k1] (3.22)

D(g−1)=(p−(k1+k2))
n

a
[cot k2− cot k1] (3.23)

d−D(g−(g−1) b)=2nn log 1 sin k2
sin k1
2 (3.24)

4n2

a2
(p−(k1+k2))2=−D2(g−1)2−(r

fl
0 )
2 (2g−1)+2r fl0 (g−1) (3.25)

Taking into account Eq. (3.9), the four unknown b, k1, k2, and D can be
obtained from the four equations (3.22)–(3.25) once p and m are given. In
this way one can determine the profiles of densities in the condensate and
the fluid, the currents and the drift velocities once we give g, n, p, and m .
We have not determined the domain of these variables where the solutions
exist. Having in mind the stochastic process where we have used the mean-
field solutions in order to explain the properties of the stationary distribu-
tions, we have just looked at the values q=1.2, l=1, p=0, 4, and m=0.1
in the mixed phase. As mentioned already before, and as can be seen from
the equations given above, if we know the solutions for one condensate for
any value L, one can obtain the solutions of the problem for n condensates
for a lattice size L taking the solution for one condensate for a lattice of
size L/n.
In Fig. 8 we show the drift velocities for the condensates which appear

up to L=1000. One notices first that the first condensate appears for
L=60. This implies that that one obtains n condensates when (roughly)
L > 60n. Next one can see that for a given value of L many condensates
move faster than fewer ones.
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Fig. 8. The drift velocity V(n) for the n-th condensate for q=1.2, l=1, p=0.4, m=0.1,
and n=1, 2,..., 16 (from bottom to top). The first condensate appears for L > 60. The
maximal drift velocity is about 0.23.

Various applications to the stochastic process of the distributions of
the charged particles obtained solving the transcendental equations given
above can be found in Section 4 (see Figs. 11 and 12).
The calculations simplify in the large L limit when the friction con-

stant n constant is small. Denoting the limiting values by

bQ B, DQ D, nQ 0 (3.26)

and

C=(g−1) B (3.27)

we obtain

k1=
2pn(g−1)
1−B
5 v
C
−D6

−1

, k2=
2pn(g−1)
1−B
5 v
C
+D6

−1

(3.28)

and

D=
d
g−C

, r fl0=
v
B

(3.29)
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C can be determined from the cubic equation

C3−C2 52g+v
2
(g−1)+

d2

2v
6+Cg[g+v(2g−1)]−g

2v
2
(2g−1)=0 (3.30)

We have used the equations (3.29) and (3.30) in the case q=1.2, l=1,
p=0.4, and m=0.1 and have obtained

V=0.11180, B=0.57929, D=0.11181

r fl0=0.86313

j fl+=0.1076, j fl−=0.0111, jc+=j
c
−=0.03437

(3.31)

Notice that the value obtained this way for V is closed to the value deter-
mined numerically on the lattice as given in the caption of Fig. 6. As we are
going to explain in Section 4, the average values of the current densities
over the ring are very useful. In the large L limit they are given by

Oj±P=(1−B) j
c
±+Bj

fl
± (3.32)

Using the values given in (3.31), one obtains:

Oj+P=0.07678, Oj−P=0.0288 (3.33)

These values are going to be used in Section 4.
The case q=1 can be studied in a similar way. For the drift velocity

one finds:

V=lx/L(p+m) (3.34)

where x is given by

p−m
p+m

=
ex+1
ex−1

−
2
x

(3.35)

Taking p=0.4, m=0.1, and l=1, we get V=9.602/L in excellent
agreement with the results obtained in the Monte-Carlo simulations (1.9).
Obviously the case q < 1 can also be solved analytically (the trigonometric
functions appearing for example in Eq. (3.6) change into hyperbolic ones).

4. THE MIXED PHASE. COMPARISON BETWEEN MEAN-FIELD

RESULTS AND MONTE-CARLO SIMULATIONS

In the last two sections we have shown, the mean-field equations
related to the stochastic process defined by Eqs. (1.1)–(1.4). In ref. 2 we
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have discussed in detail, in the case of equal densities, how to use mean-
field in order to explain the properties of the stationary states. One assumes
that in the mixed phase, one can take with equal probability in any posi-
tion of the ring the structure (condensate+fluid) obtained in mean-field. In
this section we extend this discussion for the case of unequal densities. We
limit ourselves to the case p=0.4, m=0.1, and l=1 only.
In Fig. 9 we give the average values of the currents Oj+P and Oj−P, for

q=1.2 and various lattice sizes. Within the errors they look like they con-
verge to the large L limit obtained in mean-field. Since in mean-field the
current-densities are not constant (see Fig. 7), one has to compute the
average value of the current densities j+ and j− on the ring. For q > 1, in
the infinite L limit only, the calculation of the averages is again simple
since in the condensate the positive and negative particles have a uniform
distribution like in the fluid (see also Eqs. (3.32)–(3.33)). The calculation is
more complicated in the case of large but finite values of L.
The average values of the currents for various values of q are shown in

Fig. 10. The mean-field values are obtained as described above, the Monte-
Carlo values are obtained using results from finite lattices and extrapolat-
ing to L infinity. Similar to the case of equal densities, the currents are very
well given by mean-field up to a value qc (around 1.6). This is the mixed
phase. For q > qc the currents have a different behavior (one is in the dis-
ordered phase).

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 200 400 600 800 1000 1200 1400 L

j

j3〈 〉

〉〈 ±

–

Fig. 9. Oj+P and 3Oj−P from Monte-Carlo data for q=1.2, l=1, p=0.4, m=0.1. The
lines come from mean-field in the LQ. limit.
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Fig. 10. The current of positive (top), negative particles (bottom) from Monte-Carlo Simu-
lations and from mean-field calculations in the limit LQ. (dashed lines) and homogeneous
mean-field (solid lines). The parameters are l=1, p=0.4, m=0.1, and L=800.
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Fig. 11. The correlation functions c0, 0 (top) and c+, − (bottom) for q=1.2, l=1, p=0.4,
m=0.1, and L=200. Each curve consists of the Monte-Carlo and mean-field data lying per-
fectly upon each other.

1008 Arndt and Rittenberg



0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c c+,0 0, –,

y

Fig. 12. The correlation functions c+, 0 (top) and c0, − (bottom) for q=1.2, l=1, p=0.4,
m=0.1, and L=200. Each curve consists of the Monte-Carlo and mean-field data lying per-
fectly upon each other. The drift velocity is l limyQ 0(c+, 0−c0, −)/(1−p−m). For equal densi-
ties all four curves are lying on top of each other.

In Figs. 11 and 12 and we show the two-point correlation functions as
a functions of the distance R=yL obtained in Monte-Carlo simulations
(L=200) and in mean-field. In the case of correlation functions, in order
to obtain the mean-field results one had to use the results of Section 3 for
L=200. The agreement between the simulations data and the mean-field
results is remarkable.
Since one is in a stationary state, one can’t talk about drift velocities

which are seen in non-equilibrium or in the roundabout solutions of the
mean-field equations. Let us observe however that when we use the mean-
field results in order to derive the correlation functions given in Fig. 12, for
small values of y, one obtains the following value of the drift velocity V

V=llim
yQ 0

c+, 0−c0, −
1−p−m

(4.1)

This expression is so simple because in this limit, only the fluid and not the
condensate plays a role. Using the results of the Monte-Carlo simulations
and Eq. (4.1) one can estimate the drift velocity. One gets V=0.14 which is
perfectly consistent with the value obtained looking at the random move-
ment of the condensate (see Figs. 2 and 13).
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Fig. 13. The ‘‘drift velocity’’ for q=1.2, l=1, p=0.4, m=0.1 from the algebraic approach
V=(Oj+P−Oj−P)/(1−p−m) (points) and Monte-Carlo simulations (line). The straight line
gives the mean-field value for the limit LQ..

Up to now we have discussed only the Monte-Carlo data. In ref. 2 we
have also shown how to use the algebraic approach in order to obtain the
current using the grand canonical ensemble (for correlation functions this
approach gives wrong results). In the case of unequal densities one has to
deal with two chemical potentials and the calculations become difficult. It
is interesting to consider the quantity

V=
Oj+P−Oj−P
1−p−m

(4.2)

defined for the stationary state. In mean-field, V as defined by Eq. (4.2), is
indeed the drift velocity (use Eq. (2.6) and compute C± in the fluid). In
Fig. 13 we give the values of V, as defined by Eq. (4.2), obtained for small
lattices and compare them with the mean-field results. We also show the
values of V obtained in Monte-Carlo simulations (those are not data
describing the stationary states!) and presented already in Fig. 2. Notice
that we have mentioned a fourth way to estimate V (see Eq. (4.1)) for
which we have obtained only one value for L=200 which also is compa-
tible with the data of Fig. 13. The compatibility of the various ways to
estimate the drift velocity makes us believe that we have understood at
least part of the physics of the mixed phase.
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5. CONCLUSION

In this sequel of ref. 2 we have introduced what we call the two-com-
ponent Burgers equations defined by Eqs. (2.9) and (2.10). These equations
correspond to the mean-field approximation of the stochastic model defined
in Section 1 We have found roundabout a weak solutions of these equa-
tions for w=1 in Section 3. This case correspond to the mixed phase of the
stochastic model. The weak solution of the two-component Burgers equa-
tions is obtained if we take the moisture constant m=0 in these equations.
When compared with the solutions of the equations when the moisture
constant is not zero, which can be obtained numerically, one sees that one
gets a very good approximation.
The analytical roundabout solutions presented in Section 3 allow to

determine the domain in the parameter space where the mixed phase
exists. Moreover, using these solutions one can obtain predictions for the
stochastic problem as explained in Section 4. These predictions are in good
agreement with the results of Monte-Carlo simulations on large lattices,
also for the case in which the densities of positive and negative particles are
not equal. Since Monte-Carlo simulations are much time-consuming, in the
present paper we have performed a less careful analysis of the data as
compared with the case of equal densities.
One can ask ourselves what the study of unequal densities had brought

to us beyond what we knew already from ref. 2. Let us start with the
mathematics. The two-component Burgers equations turned out to have
interesting properties that can be unveiled because one can find exact weak
solutions. The spectrum of velocities shown in Fig. 8 which can be obtained
in the case of unequal densities only, is one example. We would like to
stress that unlike the one-component Burgers equation where one knows all
the solutions (this equation is ‘‘integrable’’) we were able to find only a
class of solutions. Is the two-component Burgers equation only ‘‘partially
integrable’’? This remains an open question. The problem of the stability of
the solutions was also not properly studied. Another interesting problem is
study of the noisy case which we didn’t touch. What we have partially
learned already in the case of equal densities and more extensively in the
case of unequal densities is to which incredible extend mean-field calcula-
tions are useful. This remains true if we look at ‘‘macroscopic’’ structures
only, as seen in the case of phase separations. For example, the values of
the drift velocities obtained in Section 3 from the mean-field equation
describe the movement of the condensate in the stochastic process as
shown in Section 1. With the proper interpretation the same drift velocities
can be rediscovered in the stationary states in which we take into account
fluctuations, in the two-point correlation functions (see Eq. (4.1)) or in a
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combination of average quantities of one-point functions (see Eq. (4.2).
One last remark, the simple and nice expression for the current (1.7)
obtained in the case of equal densities, is gone. The currents shown in
Fig. 10 are obtained solving numerically transcendental equations.
Before finishing this paper we will like to comment on a paper (10) where,

in the case of equal densities, one questions the existence of the mixed phase.
If one uses the grand canonical ensemble and the algebra presented in ref. 2
and two hypotheses one argues that for ‘‘cosmological’’ large lattices the
mixed phase disappear. For example, if one takes l=1 and q=1.11, the
dimension of the lattice should be of the order 1070 in order to ‘‘loose’’ the
mixed phase. If the value of q gets closer to 1 one get lattice lengths of the
order 10490 or more. If the calculations of ref. 10 describe indeed the reality
this would be a fascinating phenomenon, certainly more interesting that the
model itself. In ref. 10 one has made one mathematical hypothesis which
was proven correct (11) and a technical hypothesis according to which one
neglects in the calculation configurations with no vacancies. This second
hypothesis, which was used already in ref. 2, is probably also irrelevant. (12)

Our own doubt about the results of ref. 10 come from the use of the grand
canonical ensemble. As stressed in ref. 2, for stochastic processes as defined
for example in Section 1, there is no grand canonical ensemble. One can
make an ad hoc definition, hope to be lucky and get the right results. As
shown in ref. 2, for the two-point correlation functions in the mixed phase,
the canonical and grand canonical ensembles give very different results (see
Fig. 21). It looked however that for the one-point function (the current) the
results were correct. We don’t want here to defend here the existence of the
mixed phase (if it survives up to lattice lengths of the order of 1070, it is
enough for physical purposes), on the contrary, we think that the real
challenge is to clarify the problem. One more argument in the favor of the
existence of the mixed phase can be found in ref. 13 where one considers the
open system (no grand canonical calculation in this case) for the same bulk
parameters as those taken on the ring when one has the mixed phase. The
input and output rates are chosen symmetric for the positive and negative
particles. One sees a first-order phase transition between a phase where the
density corresponds to the fluid (in the mixed phase on the ring) and a
maximum current phase which corresponds to the condensate on the ring.
(We remind the reader that the densities in the fluid depend on q and l.
Only and not on the density p=m=r).
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